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Abstract—Data obtained from New York City’s Taxi & Limou-
sine Commission highlights the importance of yellow cabs in
the city’s transportation infrastructure. In 2011, for example,
there were nearly 180 million cab rides. In this paper, we
provide detailed visualizations of these numerous journeys. Using
a random sample, we also develop several relevant economic
metrics. For example, we find that nearly half of all rides were
taken by a single passenger traveling short distances. In contrast,
out-of-pocket costs faced by passengers averaged less than $6
per mile, with 90% paying less than $8 per mile, even when the
social value of the city’s roads is highest. From a city planner’s
perspective, the current fare structure for yellow cabs may not
be optimal. Finally, we propose a statistical method to analyze
dynamic flow patterns of yellow-cab rides that can ultimately be
extended to a multivariate model.

I. INTRODUCTION

In Manhattan, yellow taxicabs (cabs) seem ubiquitous.
They appear in almost all of the numerous movies filmed
in New York City (NYC), and an award-winning situation
comedy was devoted to the cabbie profession. In NYC, the
Taxi & Limousine Commission (TLC) licenses all yellow cabs
through a medallion system, which allows it to regulate fares
and standards. TLC reports that there were 13,237 licensed yel-
low cabs on NYC’s roads in 2011.1 Each yellow cab typically
operates on a shift schedule with two or more different drivers
per day, which permits a single cab to be in near-continuous
daily operation.

Data were obtained from the TLC on all yellow cab rides in
2009, 2011, and 2012. The focus of this study is 2011, during
which there were nearly 180 million yellow cab rides. When
a cab picks up passengers curb side, its meter records detailed
information about the journey that is ultimately relayed to
the TLC. This information includes the time, longitude, and
latitude of the pick-up and drop-off location, as well as the
number of passengers, the fare (including tolls and taxes), the
tip (if a credit card is used), as well as a trip’s (piecewise
linear) distance and duration.

We have developed animated visualizations and summary
statistics of these journeys to demonstrate the important role
that yellow cabs play in NYC’s transportation infrastructure.
We examine the spatial and temporal characteristics of these
journeys. We also develop useful economic metrics to examine
whether, from a planning perspective, the current fare sched-
ule is optimal. Finally, we propose a statistical approach to
examine the dynamic patterns of yellow cab journeys.

1Ted Mann, “New Cab Plan Curbs Hybrids,” The Wall Street Journal,
September 19, 2012.

II. RELATED WORK

There is a considerable academic literature on transporta-
tion economics, and a comprehensive literature review is
outside of the scope of this workshop paper. In brief, as with
other areas of economics, transportation economics deals with
the allocation of scarce resources in a transportation network.
People and goods flow through transportation networks at cer-
tain speeds along defined paths, and a single trip may involve
the use of multiple modes of transportation. Modeling the
demand for transportation amounts to the thought experiment
of an individual making a choice among a set of discrete
and finite alternatives. An individual will choose the option
that yields the highest benefit. Not surprisingly, this modeling
approach is called discrete choice theory, the econometrics
of which was developed and advanced by economist Daniel
McFadden. More information can be found in [1].

Regarding the analysis of taxi data, several efforts have
been done in recommendation systems [2]–[4], modeling [5]–
[8], and visual analytics [9], [10]. Only [10], however,
examined yellow cab data for NYC, focusing on visual ex-
ploratory tasks. In this paper, we look at the data from a
hypothetical policy planner’s perspective using various metrics
to begin to understand better the role yellow cabs play in
NYC’s transportation infrastructure. The visualizations here
supplement those in [10].

III. MILLIONS OF JOURNEYS

A. One Day in the Life of a Yellow Cab

There were nearly 180 million yellow cab journeys
throughout NYC in 2011. With only about 13,000 yellow
cabs on the road, this implies that each cab is making nearly
14,000 journeys each year. Figure 1 maps out a day in the
life of a single yellow cab. On April 30th, 2011, this yellow
cab made curb-side pickups of 58 total passengers who paid
$650 in total fares. In Figure 1(a), hired trips from the yellow
cab are highlighted in red. Because our data does not include
GPS tracking for each trip, we constructed plausible routes
by utilizing fastest paths based on speed limits. Figure 1(b)
shows a similar visualization but also includes journeys when
the taxi is roaming free without a passenger. Hired trips were
marked with blue lines, while empty trips were marked with
red lines. This combined visualization expresses how much
time and distance a taxi spent looking for passengers compared
to fare-generating time and distance. Animations are available
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Fig. 1. Road coverage by a single cab on 04/30/2011: (a) when hired; and (b) when both empty (red) and full (blue).

online for Figure 1(a) 2 and Figure 1(b) 3.

B. Spatial and Temporal Characteristics

For each curb-side pick up and drop off, a cab’s meter
records the time in seconds elapsed since January 1, 1970 and
the location in longitude and latitude. Longitudes and latitudes
can be mapped to any level of geographic aggregation, and
we have geocoded this information to the neighborhood map
used by the TLC.4 This neighborhood map would likely be
recognized by any New Yorker.

For our analysis, we generated a simple random one-in-
24 sample of the all of the 2011 cab rides. While future
extensions will examine all of the data obtained from the TLC,
the results presented here are unbiased summary statistics. We
have eliminated the limited number of journeys that begin or
end in the Bronx, Staten Island, or any of the three regional
airports (JFK, LaGuardia, and Newark). We also eliminated
journeys of exceedingly long duration (60 minutes) or distance
(60 miles), as well as journeys that record no passengers.
Finally, we aggregated all locations in Brooklyn and Queens
to those respective boroughs, as well as a limited number
of locations in Manhattan into a category we call “Other in
Manhattan” or “OIM”.

The first observation we note is that almost all yellow
cab rides begin and end in Manhattan, making it an obvious
focus for this workshop paper. Within Manhattan, a large
number of cab rides begin and end in Midtown (MID), the
Upper East Side (UES), or the Upper West Side (UWS).
This concentration of journeys is hardly surprising. First,

2http://vgc.poly.edu/files/hvo/cab hired.mp4
3http://vgc.poly.edu/files/hvo/cab hired empty.mp4
4http://www.nyc.gov/html/tlc/downloads/pdf/passenger info map.pdf

population densities in the UES and UWS exceed 40,000
persons per square kilometer, more than double the highest
population densities in either Brooklyn or Queens.5 Only the
East Village has a population density that approaches this
magnitude. Second, there is a considerable concentration of
business establishments in MID.6

Figure 2 displays a histogram of pick up locations (based
on the geocoding discussed above). For those neighborhoods
not already discussed, the legend is: BR is Brooklyn; CH is
Chelsea; EV is East Village; FD is Financial District; GD is
Garment District; GR is Gramercy; GV is Greenwich Village;
HK is Hell’s Kitchen; LES is Lower East Side; QN is Queens;
SO is Soho; and WV is West Village. Fewer than 3% of rides
begin in either Brooklyn or Queens. Nearly 40% of rides begin
in MID, UES, or UWS. Note that MID contains Grand Central
Terminal, but does not include Pennsylvania Station, which is
located in CH (based on the TLC map). Nearly 7.5% of rides
begin in CH.

Figure 3 displays a histogram of drop off locations using
the same naming convention. The results are largely consistent
with those seen in Figure 2 with two main exceptions. The
share of cab rides that end in either Brooklyn or Queens
(regardless of their origin) rises markedly. The share of rides
that end in Queens rises to 2.24%, while that in Brooklyn
rises to 3.31%. Again, we will address this point in greater
detail in the section on dynamic modeling, but a bit of New
York fokelore appears wrong. Cabs do go to Brooklyn (and
Queens)–they just do so infrequently.

We now examine the temporal characteristics of yellow cab
rides. Figure 4 displays a histogram of cab rides by month,

52010 U.S. Census.
62011 County Business Patterns.



while Figure 5 and 6 display them by day of week and by
time of day (24-hour clock), respectively.

Yellow cab rides are fairly uniform throughout the year.
(We have confirmed that 2011 is consistent with other years.)
They reach a slight peak in March and a slight trough in
August. In January 2011, the average air temperature at JFK
Airport was about 30◦F.7 Peak temperatures were not reached
until July and August, with averages of 79◦F and 75◦F respec-
tively. Those months also recorded maximum temperatures that
exceed 90◦F. As a result, it appears that yellow cab rides are
largely invariant to temperature. We continue to explore the
role of rainfall, but we do not believe that general weather
conditions are a strong driver of cab rides (so to speak).
In 2011, nearly 51 million tourists visited NYC.8 We are
exploring whether seasonal variation in tourist patterns help to
explain the monthly variation seen in Figure 4. We think this
implausible largely because tourism in NYC typically peaks
in July and August.

Turning to daily characteristics, Figure 5, in contrast with
Figure 4, shows a clear pattern. The distribution of yellow cab
rides rises steadily throughout the work week. About 12.5%
of rides occurs on Sunday, which is lower than one would
expect if journeys were uniform over the week (indicated
by the horizontal line). This share rises by 2.5 points to
its Friday peak. In terms of the total daily trips taken, this
difference amounts to approximately 12,000 yellow cab rides.
Again, the temporal pattern here is clear: yellow cab rides are
concentrated late in the week, with nearly one-third of all cab
rides taken on Friday and Saturday.

Figure 6 displays a histogram of journeys by hour, which
demonstrates the most temporal variability. The share of jour-
neys declines steadily from midnight to 5AM. As the morning
rush hour begins at 6AM, however, the volume of journeys
rises markedly. This level is largely sustained throughout the
day, albeit with a small dip at 4PM, which may be associated
with the shift change in yellow cab drivers. Journey volume
again ramps up with the evening rush hour, which TLC defines
to be 4 to 6PM. Peak volume, however, is reached at 7PM,
declining steadily thereafter, only to resume the cycle. The
sustained volume throughout the day, together with a 7PM
peak, suggests that the current TLC definition of rush hours
may not be optimal.

C. Journey Characteristics

We now turn to importance characteristics of yellow cab
journeys in NYC, particularly in Manhattan. There is a striking
but simple characterization: a single passenger, slowly travel-
ing a short distance. (This bit of New York fokelore is correct.)
Figure 7 displays a histogram of the number of passengers
for a given ride. Figure 8 displays a kernel density plot (or
probability density function) of the distance in miles of a given
journey.

From Figure 7, we find that nearly 70% of yellow cab
journeys are occupied by a single passenger. This share spikes
between 6 to 8AM, hours the TLC designates to be morning
rush hour. During these hours, nearly 80% of journeys are

7National Oceanic and Atmospheric Administration (NOAA).
8http://www.nycandcompany.org/research/nyc-statistics-page
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Fig. 2. Distribution of pickup location

0
2

.5
5

7
.5

1
0

1
2

.5
1

5
1

7
.5

2
0

P
e

rc
e

n
t

BR CH EV FD GD GR GV HK LES MID OIM QN SO UES UWS WV

Distribution of Drop Off Location

Fig. 3. Distribution of drop off location

occupied by only a single passenger (another fact that suggests
variability is not driven by tourism). The high share of single
passengers implies that, on a daily basis, cabs carry far
fewer than one million passengers. In contrast, New York’s
Metropolitan Transit Authority (MTA) reports that, in 2011,
NYC’s subway system carried nearly 4.5 million passengers
per day, while MTA buses running throughout NYC carried
over 1.8 million passengers.9

Figure 8 displays a density plot of the distance of cab
rides, omitting the density beyond 10 miles. (Note that this
is a probability density function, not a cumulative density
function from which one could readily read percentiles.) The
mode of the distribution falls almost exactly at one mile.
The average distance is 2.1 miles, and slightly over 70% of
journeys are 2.5 miles or less. Simply put, this is a highly
skewed but important characterization. Yellow cab journeys
are overwhelmingly short distance.

Figure 9 displays a density plot of the average speed
in miles per hours (MPH) for a cab journey. Recall that a
yellow cab meter measures piecewise linear distance, which
is not necessarily the same thing as the distance between
two locations. (For example, a yellow cab traveling one mile
east along 42nd Street and turning north on 8th Avenue to

9http://www.mta.info/nyct/facts/ridership/
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Fig. 4. Taxi rides by month
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Fig. 5. Taxi rides by day of week
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Fig. 6. Taxi rides by time of day
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Fig. 7. Number of passengers for a given ride
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Fig. 8. Distance in miles for a given ride

travel one mile would record a journey of two miles. In
linear distance, these two locations are only 1.4 miles apart.)
The speed limit throughout NYC is 30MPH, unless otherwise
posted.10 Figure 9 shows a modal speed of about 10MPH. On
average, yellow cabs move at about 12MPH, while about 76%
of journeys move at 15MPH or slower, half the posted speed
limit throughout NYC.

There is another way to examine this characteristic, which
is the time in minutes necessary to travel one mile or time
per mile. Figure 10 displays a density plot of time per mile.
The modal value is about four minutes to travel one mile. The
average is 5.9 minutes with about a quarter of the journeys
requiring at least seven minutes to travel one mile. A pedestrian
walking “briskly” would take about 15 minutes to walk one
mile. In other words, the typical single passenger who is
traveling a short distance is doing so slowly.

D. A City Planner’s Perspective

An extended discussion of public economics and external-
ities is outside of the scope of this workshop paper. Any intro-
ductory textbook on public economics addresses the topic at
length. For example, Rosen and Gayer define an externality as

10http://www.nyc.gov/html/dot/html/motorist/knowthespeedlimit.shtml
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Fig. 9. Density plot of speed in miles per hour for taxi rides
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Fig. 10. Density plot of time per mile

occuring “when the activity of one entity affects the welfare of
another in a way that is outside the market. Unlike effects that
are transmitted through market prices, externalities adversely
affect economic efficiency.” [11] Conceptually, an externality
drives a wedge between the value or cost of goods to an
individual and the value or cost of goods to a group or society,
which gives rise to the economic inefficiency. Externalities
often arise with public goods, such as roads. For example, in
transport economics, road congestion is a negative externality.

We see such congestion when we examine time per mile at
5PM. Figure 11 displays the same density plot as Figure 10, but
limited to those journeys that commence between 5 and 6PM.
The entire density shifts to the right, meaning it takes longer
to travel one mile at 5PM than it does for the day as a whole.
The average time to travel one mile rises by nearly 10%. Based
the density plots, one should note that this increase is occuring
for all trips at this time as the density has shifted right in its
entirety. Some famous New Yorkers have complained about
yellow cab drivers changing their shifts around 5PM, when
“the number of active taxicabs on the streets falls by nearly
20 percent compared with an hour before.”11 Having fewer
yellow cabs on the road at this time, while an inconvenience

11Michael Grynbaum, ”Where Do All the Cabs Go in the Late Afternoon?”
The New York Times, January 11, 2011
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Fig. 11. Density plot of time per mile at 5PM

for a former NYC mayor and his law partner, likely reduces
traffic congestion when the social value of NYC’s roadways
is its highest. This is particularly true when one considers the
array of transportation alternatives available in NYC.

An obvious question arises at this point: what are (largely-
single) passengers paying to go short distances slowly? Yellow
cab pricing is a two part tariff: a fixed (or flat) fee of $3.00
($2.50 entry and $0.50 MTA tax) and a variable fee of $0.50
for each additional “unit,” where a unit is determined by a
combination of speed and distance. An additional dollar is
added to the fixed fee on weekdays between 4 and 8PM, as
are any bridge or tunnel tolls.12 We calculate the total cost
of a journey faced by passengers: the sum of fare, taxes, and
tolls. We exclude the tip from this calculation as this amount
is chosen by the passenger rather than being a fee schedule
faced by the passenger.13 We then normalize this amount by
the total distance of the journey to obtain the passenger cost
per mile.

Figure 12 displays the density plot of the cost per mile
overall and between 5 and 6PM. Both density plots have
pronounced modes at about $5, which is more pronounced
at 5PM. Both plots have several “spikes” that are associated
with mass points in total costs induced by tolls. Passengers
are paying $5.26 on average to travel one mile, which rises by
about 5% to $5.51 per mile for journeys between 5 and 6PM.
While both densities are somewhat skewed, 90% of journeys
cost a passenger $7.77 or less per mile overall and $8.08 or
less per mile between 5 and 6PM.

To date, we have found no solid statistics on the value to
New Yorkers of a mile of their roadways. Nevertheless, it is
certainly true that this value rises, perhaps markedly, during
morning and evening rush hours. On the other hand, yellow
cabs cannot carry the passenger volume for a given amount
of roadway space relative to, say, MTA buses. In 2011, the
base fare for a single ride on local MTA buses was $2.25. The
base fare for interborough express buses, which cover distances
well in excess of one mile, was $5.50. We note that the average

12http://www.nyc.gov/html/tlc/html/passenger/taxicab rate.shtml
13Because tips are electronically recorded when they are charged to a credit

cards, we do not observe the entire distribution of tips. For those that are
recorded, the median tip value was about 20% of the fare.
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Fig. 12. Cost per mile for taxi rides in overall and between 5pm and 6pm

passenger cost per mile during evening rush hours is $5.51.

IV. DYNAMIC TRANSITIONS

The visualizations in Figure 1 and discussion above present
an obvious method of analysis: given a cab ride begins in a
particular location, what is the likelihood that it ends in the
same or some other location? If such dynamic transitions do
not depend the next to last journey, we call such likelihoods a
first-order Markov process. For example, if the likelihood a cab
goes from Midtown to the Upper East Side does not depend
on the fact that it previously picked up and dropped off in
the Upper West Side, then the process can be called a first-
order Markov. (Given the structure of these data, it is trivial
to use higher-order Markov processes. For our purposes here,
the first-order approach is satisfactory.) The use of Markov
processes has become widespread in dynamic stochastic mod-
eling. For example, its use is ubiquitous in macroeconomics
(dynamic stochastic general equilibrium), finance (dynamic
asset pricing), and areas of microeconomics (dynamic pro-
gramming).

Formally, a Markov process {Xt} is a stochastic process
with the property that, given the outcome of Xt, the outcomes
of Xs for s > t are unaffected by the outcomes of Xu for
u < t. (Our discussion of Markov processes is deliberately
brief. For a thorough treatment, see [12].) The probability
that outcome j is observed this period, given outcome i was
observed last period, is called a one-step transition probability,
customarily denoted Pij .

P{Xt = j|Xt−1 = it−1, Xt−2 = it−2, . . .}
= P{Xt = j|Xt−1 = i}∀t (1)

If the one-step transition probabilities are stationary, they
can be arrayed into a square matrix with a dimension that is
determined by the number of possible (and finite) outcomes.
For example, if there are J possible outcomes, the transition
probability matrix has dimension J × J with elements that
determine the probability of transitioning from the row out-
come to the column outcome. Naturally, a row sum is equal
to 1. A Markov process is completely defined by its transition
probability matrix and some initial starting condition, X0. For

a complete application of this statistical approach to dynamic
land use, see [13].

Using the neighborhood location discussed above, our
Markov transition probability matrix would be 16 × 16 with
on-diagonal elements capturing the likelihood that a yellow
cab ride began and ended in the same neighborhood. We refer
to these probabilities as “unconditional” as they are simply the
observed outcomes. Figure 13 displays the Markov transition
matrix.

We find several salient features of these unconditional
probabilities. For example, the probability a cab ride begins
and ends in Brooklyn is 52%, while that for Queens is 60%.
(Recall we have excluded journeys to and from airports.)
Consider that if these Markov states were represented with
a 16-sided die, the probability of any outcome on a roll
would be 6.25%. Therefore, these two intra-location transition
probabilities are extraordinarily large. None of the other 14
on-diagonal transition probabilities are nearly as large. This
suggests that particular yellow cab drivers may “specialize” in
intra-neighborhood journeys, a subject that we are currently
exploring. We also find that the on-diagonal elements are 13%
for Chelsea, 12% for Gramercy, 22% for Midtown, 32% for
the Upper East Side, and 31% for the Upper West Side. These
findings reinforce the point that yellow cab journeys are short
distance. In contrast, a journey starting in Soho is likely to end
anywhere else, including Soho, almost uniformly.

For future iterations of this work, we are developing a
multivariate Markov model that will allow us condition the
transition probabilities on a number of independent covariates
from other data sources. For example, information from the
U.S. Census allows us to compute population density (which
normalizes the differences in land area), as well as concen-
trations of business establishments. We will also be able to
include information on weather conditions by hour in NYC,
which will provide a time-varying determinant that is common
to all yellow cab journeys. Ultimately, we intend to develop
a simulation model, based on the transition probabilities, to
examine whether and how the distribution of journeys would
be affected by alternative fare structures and tolls.

V. CONCLUSION

The visualizations in this paper highlight the important role
that yellow cabs play in NYC’s transportation infrastructure.
As shown, however, this role typically appears to be limited
to picking up a single passenger and transporting her slowly
over a short distance. The out-of-pocket cost she should expect
to pay is less $6 per mile, and almost certainly less than
$8 per mile, even when the social value of the city’s roads
is highest. Given the richness of these data, we propose a
statistical method to analyze dynamic flow patterns of taxi
rides that can ultimately be extended to a multivariate model.
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! BR CH EV FD GD GR GV HK LES MID OIM QN SO UES UWS WV
BR 52.16% 3.05% 4.13% 3.01% 1.74% 3.63% 3.23% 0.96% 4.93% 4.59% 7.73% 2.85% 2.17% 2.68% 1.45% 1.67%
CH 2.79% 12.97% 3.88% 2.12% 7.35% 9.84% 6.99% 5.54% 2.00% 15.32% 11.52% 1.13% 3.65% 5.20% 4.98% 4.72%
EV 7.03% 7.06% 7.57% 3.18% 4.84% 12.55% 8.38% 2.13% 6.18% 9.60% 12.37% 2.04% 3.60% 6.62% 3.02% 3.82%
FD 5.62% 6.16% 4.50% 7.46% 5.38% 7.18% 4.90% 2.80% 5.64% 14.66% 17.74% 1.33% 4.99% 5.50% 2.44% 3.69%
GD 2.02% 7.20% 2.55% 2.18% 5.09% 10.19% 3.67% 5.28% 1.30% 28.10% 12.52% 1.60% 2.04% 8.88% 5.45% 1.92%
GR 2.56% 7.66% 5.75% 2.60% 7.28% 12.05% 6.34% 2.39% 2.95% 17.20% 13.58% 1.52% 3.11% 8.87% 3.26% 2.89%
GV 4.58% 10.11% 7.26% 3.11% 5.59% 9.95% 7.95% 2.43% 4.02% 11.70% 12.96% 1.30% 5.24% 5.36% 3.37% 5.07%
HK 1.89% 11.99% 2.32% 2.06% 7.21% 6.31% 3.66% 8.08% 1.35% 22.09% 11.38% 1.53% 1.99% 5.80% 8.90% 3.43%
LES 11.04% 5.78% 9.52% 5.29% 3.77% 9.45% 7.16% 1.92% 6.82% 8.01% 12.63% 2.10% 4.61% 5.32% 2.73% 3.85%
MID 1.50% 5.65% 2.14% 2.13% 8.08% 8.64% 3.16% 4.58% 1.13% 21.85% 12.05% 1.99% 1.82% 14.60% 8.73% 1.94%
OIM 2.68% 5.46% 3.16% 3.39% 5.22% 7.85% 4.09% 2.54% 2.20% 16.25% 18.21% 1.33% 2.49% 13.99% 8.44% 2.71%
QN 2.86% 1.73% 1.19% 0.94% 2.02% 3.08% 0.98% 1.14% 0.86% 8.29% 6.24% 60.35% 0.62% 7.14% 2.08% 0.49%
SO 5.52% 10.71% 5.18% 4.91% 5.38% 7.44% 7.88% 2.59% 4.66% 12.10% 13.35% 0.98% 4.40% 4.43% 3.20% 7.28%
UES 0.81% 2.51% 1.46% 1.22% 3.96% 5.39% 1.70% 1.52% 0.89% 19.33% 16.26% 1.42% 0.92% 32.32% 9.39% 0.88%
UWS 0.73% 3.65% 0.94% 0.66% 2.96% 3.15% 1.54% 4.11% 0.55% 17.71% 16.37% 0.77% 0.77% 14.29% 30.71% 1.10%
WV 3.51% 12.82% 5.02% 3.13% 5.37% 7.84% 8.00% 3.78% 3.00% 13.15% 13.13% 0.98% 5.72% 4.89% 4.39% 5.27%

Unconditional!Markov!Transition!Probabilities

Fig. 13. The unconditional Markov transitional matrix by neighborhoods with on-diagonal elements capturing the likelihood that a yellow cab ride began and
ended in the same neighborhood. Elements with more than 20% are highlighted in green.
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