
Document hosted at 
http://www.jdsupra.com/post/documentViewer.aspx?fid=6326de4f-6076-4660-a26f-e8dd3f369ce1



F
rom the early 1980s a cultural divide developed in
the software community between proponents of
proprietary software and advocates of free or open
source software. The reasons for this separation of

views are many. They include political, philosophical, eco-
nomic, technical and many other factors. Over time the
various camps have learned to co-exist on a number of lev-
els. The actual number of legal disputes centred on these
very different approaches to software development and use
has been far less than one might have expected. Still the
functional aspects of these two distinct approaches to soft-
ware development have and will continue to result in dif-
ferences likely to be addressed through developments in
intellectual property law. To discuss some of these devel-
opments past and future we need a common context.

What is proprietary software?
Proprietary software is software with restrictions on
using, copying and modifying as enforced by the owner.
Restrictions on use, modification and copying are
achieved by both legal and technical means. Technical
means include releasing machine readable binaries to
users and withholding the human readable source code.
Legal means can involve trade secrets, non-disclosure
agreements, software licensing, copyright and patent law.

What is open source software?
The most widely accepted approach to describing open
source software is that of the Open Source Initiative.
Open source means the user of the software must have,
or have access to, the source code, but it also means
more. The user also has the rights to redistribute, aggre-
gate, modify and create derivative works based on the
software. Open source software may be subject to some
significant restrictions on use. Derived works may be
required to carry a different identity, there may be no
restrictions against use in particular fields of endeavour
or particular product uses. Importantly under the most
widely accepted definition the licence, derived works

must not place restrictions on other software that is dis-
tributed along with the licensed software. For example,
the licence must not insist that all other programs dis-
tributed on the same medium must be open-source soft-
ware (http://www.opensource.org/docs/osd).

What is free software?
The term free software has developed largely through
the work of Richard Stallman and the Free Software
Foundation (FSF). Stallman’s approach to the definition
and use of non-proprietary software is broader both
technically and philosophically:

Free software is a matter of liberty, not price. To
understand the concept, you should think of free as
in free speech, not as in free beer. Free software is a
matter of the users’ freedom to run, copy, distribute,
study, change and improve the software. More pre-
cisely, it refers to four kinds of freedom, for the users
of the software: 
• The freedom to run the program, for any purpose

(freedom 0). 
• The freedom to study how the program works,

and adapt it to your needs (freedom 1). Access to
the source code is a precondition for this. 

• The freedom to redistribute copies so you can help
your neighbour (freedom 2). 

• The freedom to improve the program, and release
your improvements to the public, so that the
whole community benefits (freedom 3). Access to
the source code is a precondition for this.
http://www.gnu.org/ philosophy/free-sw.html

Stallman’s approach and views are important
because they have led to the development of one of the
most widely used open software licences.

History of open source software
To appreciate the cultural relationships of the open source
and proprietary software communities some understand-

US: SOFTWARE

Culture clash
Proprietary and open software have developed in parallel in the US over 
the past two decades. Craig Bachman and Anne Glazer of Lane Powell 
examine some legal intersections between the two models

www.managingip.com
Americas IP Focus 2007 65

Document hosted at 
http://www.jdsupra.com/post/documentViewer.aspx?fid=6326de4f-6076-4660-a26f-e8dd3f369ce1



ing of their history is important. There are two primary
threads in the history of the open source movement. The
first centres on Richard Stallman, the Free Software
Foundation, and the efforts that led to the GNU General
Public Licence (GPL) and the software released under the
GPL, particularly the Linux kernel. The second thread cen-
tres on the University of California at Berkeley and its role
in developing the Unix operating system and led to the
BSD Unix family of programs and licences. Both threads
trace their roots back into the 1970s and 1980s. A more
recent development occurred in 1998 when Netscape
released its browser software under an open source licence
through an organization known as Mozilla.org. 

The BSD licence, while similar in a number of impor-
tant ways to the GPL, did not require that the derivative
works be subject to the same terms as the initial BSD
licence. The BSD has served as a model for a number of
other open source licences. 

In order to release the Netscape browser under an
open source licence such as the GPL, each underlying
licensor of software used in the browser would have to
agree to release their incorporated code under the open
source licence chosen by Netscape. The prospect of get-
ting those agreements was unlikely. As a result Netscape
decided that the best approach would be to write its
own open source licence. That new licence would
attempt to address Netscape’s specific issues while keep-
ing within the general requirements of the open source
types of licences and making some “improvements” to
the language and coverage of the licence.

Netscape’s initial efforts illustrate the tendency of
commercial developers moving into open source to
want to rewrite standard open source licences. Second,
Netscape’s original effort to broadly rewrite the licence
showed that open source is truly a community-based
project and the community will react to and pressure
anyone who wants to change open source licences.
Open source programmers can also withhold efforts on
projects if the licence terms for those projects violate the
spirit of the open source movement. Netscape wanted a
new licence to cover both the existing licensed software
in its program and to allow it to retain certain rights to
release proprietary commercial versions of software
developed as part of the proposed Netscape open source
project. Netscape’s cause was helped because it enlisted
the assistance of the open source community and, more
important, it listened to the comments of the communi-
ty and worked with it. After reaching a compromise
form of licence acceptable to the open source communi-
ty, Netscape developed what is now known as the
Mozilla Public Licence. This licence now serves as an
important model of an open source licence in situations
where commercial software or commercial development
are involved. 

Taxonomy of open source licences
While a standard commercial proprietary software licence
is focused on protecting the copyright interests of the
owner by restricting the uses of the software, open source
licences place minimal restrictions on the use of software
in order to “free” the software. The open source licences
have a common requirement that source code be made
available and that users of the software have the right to
make derivative works. The licences all disclaim war-
ranties and many make an effort to limit liabilities. Four
broad categories are the GPL or “free” family of licences,
the BSD set of licences, including the MIT X licences, the
Mozilla Public Licence, and, finally, other non-GPL and
“commercial” licences. The categories can be distin-
guished in a number of ways, but the most important dis-
tinction is in the way they address the issue of permitting
derivative works to be later made proprietary.

The issue of software patents 
Complex structures such as the internet depend on many
technological standards. About 30 standards underlie
every click of a mouse in a web browser from the HTML
file format through the TCP/IP communications protocol,
all the way down to a standard specifying the thickness of
the gold plating on an ethernet cable. If just five of these
standards each contain a single patent bearing a 5% roy-
alty, profit potential for any small company engaging in
internet software development would be eliminated. 

Today’s computer industry standards increasingly
include technology that may be covered by a software
patent. A patent owner can demand a royalty from all
parties that implement the patented principle. Often there
is no way to implement a standard without making use of
a particular patented principle. This effectively gives the
patent holder control of who will implement a standard
containing his patented principle. Patents may become
embedded in industry standards in a number of ways.
They may be knowingly embedded in the standard as it is
being created, or they may be submarine patents,
unknowingly part of the standard until they surface after
the standard is already in wide use. A pernicious patent
holder can engage in patent farming: influencing a stan-
dards organization to use a particular principle covered by
a patent. In the most deceptive form of patent farming, the
patent holder encourages the standards organization to
make use of a principle without revealing the existence of
a patent covering that principle. Later the patent holder
demands royalties from all implementers of the standard.

Recent court cases have involved patent farming or
submarine patents in standards. The Eolas case is a good
illustration of a submarine patent (Eolas Technologies
Inc v Microsoft Corp, 399 F3d 1325, 1339 (CA Fed
2005)). An inventor held a patent on a widely used fea-
ture of HTML, the standard that describes the format of

US: SOFTWARE

www.managingip.com
Americas IP Focus 200766

Document hosted at 
http://www.jdsupra.com/post/documentViewer.aspx?fid=6326de4f-6076-4660-a26f-e8dd3f369ce1



web pages. The patent holder did not make his patent
known for years, and then sued Microsoft for use of his
principle. The patent holder was awarded a judgment by
the court. Over time companies using alternate technol-
ogy that did not use the principle of the Eolas patent
developed non-infringing work-arounds.

The Rambus case is a good illustration of patent farm-
ing (Rambus v Infineon, 318 F3d 1081, (C A Fed 2003)).
A manufacturer allegedly influenced an organization
attempting to standardize computer memory to use its
technology. The manufacturer did not disclose that it had
a patent application in process on the same technology.
Years later, the manufacturer started bringing patent
infringement lawsuits against all implementers of the mem-
ory standard. Reactions of industry leaders resulted in
movement away from the Rambus technology, enhance-
ment of alternate technologies and collaboration among
industry leaders ultimately leading to a large antitrust
investigation and enormous fines and guilty pleas.

The impact of such a situation is most severe for
open source developers. Those developers generally do
not charge a royalty for their
software, and thus generally
cannot afford to pass on roy-
alties to patent holders. Open
source lives on collaboration,
and its collaboration forms
only when all parties have the
same rights. The presence of
a required royalty payment
for implementation of a
patented principle would
probably abort any open
source development in that
area. Since today’s software
patents are written to be
deliberately vague in order to
have the widest possible
scope of enforcement, it is a
truism that any significant
work of software infringes
upon some patent. The
patent situation is bad
enough when applied to the
general field of software.
When applied to standards, it
specifically restricts the inter-
operation of programs and
communication between
them, because those are the
subjects of computer industry
standards. Thus, software
patents can be used to pro-
hibit interoperability. 

Obviousness and prior art
The cultural gap between the open source and proprietary
communities can be a factor creating forces which in the
end may reduce the grip of proprietary holders on legal
ground they have staked out for many years. In the recent-
ly decided patent case KSR International v Teleflex the
Supreme Court reminded us that patented matter might
be obvious to a person of ordinary skill in the art even
though the often used teaching, suggestion, obviousness
shortcut test for obviousness is not met (550 US ___, 127
S Ct 1727 (2007)). An open source advocacy group, the
Electronic Frontier Foundation, was among those filing
amicus briefs supporting the logic of the Supreme Court’s
decision. The EFF noted that the experience of the open
source community was a particularly relevant considera-
tion because it provides an example of a climate where
development takes place in the open and it may well be
obvious to many to try the patented principle.

Similarly, the open source experience suggests that in
open development contexts relevant and potentially inval-
idating prior art may exist outside the patent office file.

US: SOFTWARE

www.managingip.com
Americas IP Focus 2007 67

Anne W Glazer, co-chair of the Lane Powell intellectual property
and technology practice group, practises primarily in the fields of
trade mark, copyright, licensing and contracts. As head of Lane
Powell’s trade mark team, she is especially skilled at counselling
and representing companies in all aspects of trade mark law and
managing trade mark portfolios. She also counsels and represents
companies in the areas of e-commerce, the internet, distribution,
marketing and advertising. Glazer has significant experience in IP

and unfair competition litigation, including computer software, trade secrets,
trade marks and copyrights. She earned her JD with honours and her BA magna
cum laude, both from the University of Washington where she was a founding
member of the Pacific Rim Law & Policy Journal. Ms. Glazer has been named
in Best Lawyers in America for the past seven years. She is a frequent speaker
and author on intellectual property and internet topics.

Anne W Glazer

Craig D Bachman, co-chair of the Lane Powell intellectual prop-
erty and technology practice group, practises primarily in the
field of intellectual property and antitrust litigation. He has been
a trial lawyer since 1978, representing clients in trials involving
patent, trade mark, copyright, antitrust, trade regulation, insur-
ance practices and professional malpractice. He also counsels
clients concerning strategic management of patent, trade mark
and other IP assets, and in distribution, branding and marketing.

Bachman’s technology background was in biochemistry, and he has long had
interest in the economic issues surrounding technology development. He earned
his JD from Lewis and Clark College Northwestern School of Law and his BS
from Portland State University. He has been named in Best Lawyers in America
and Oregon Super Lawyers for intellectual property, and he frequently writes
and speaks about intellectual property, antitrust and trial techniques.

Craig D Bachman

Document hosted at 
http://www.jdsupra.com/post/documentViewer.aspx?fid=6326de4f-6076-4660-a26f-e8dd3f369ce1


