
Will Google Break the GPL?i

Open Source Licensing = Confusion

Confusion surrounds compliance with open source licensing. Reactions vary from rigorous

compliance to adopting a hands-off approach especially when the open source license at issue is

the General Public License (GPL) or a GPL derivative. These licenses popularized the concept

of copyleft, which leverages copyright law (providing, in the United States, statutory damages

and injunctive relief for infringement of a registered copyright), to promote their philosophy of

“freeing” code from intellectual property restrictions. Even more confusing to those analyzing

issues with code covered by open source licenses is the right to make derivative works.

Derivative works can be confusing enough with more traditional art forms but become even

more difficult to apply when the subject matter involves computer code. For example, let’s say

that Company X wishes to utilize a package, licensed under the GPL, with its proprietary

codebase. But, Company X doesn’t want to trigger the requirement that it open up its proprietary

code upon distribution. How does one interpret the concept of a derivative work or a work

“based on” code covered by a GPL license?

Sockets …a Possible Answer

The Free Software Foundation (FSF) permits aggregation (separate programs distributed on the

same media) but proposes that more intimate forms of combination (e.g., running via the same

executable file or linked and running in the same address space) between two programs may

result in a derivative work.ii But, partially due to the vast array of possibilities when architecting

a computer solution, FSF is less certain when it comes to the use of sockets:

By contrast, pipes, sockets and command-line arguments are
communication mechanisms normally used between two separate
programs. So when they are used for communication, the modules
normally are separate programs. But if the semantics of the
communication are intimate enough, exchanging complex internal data
structures, that too could be a basis to consider the two parts as
combined into a larger program. iii

nick
Typewritten Text
Copyright 2013. Ria Farrell Schalnat

nick
Typewritten Text

nick
Typewritten Text

Thus, some conventions have developed based on the concept of utilizing two source programs,

one of which is licensed under the GPL.iv

• If the two sources are compiled and statically linked, the resulting executable is a single

machine code combination of those two sources. This is considered a derivative work.
• If the two sources are compiled and dynamically linked, the resulting executable may be

considered a derivative work if designed to run in a shared address space even though the
executables remain separate. It may be necessary to look at the specific use of the GPL-
based code and the level of communication between that and the proprietary code. The
argument that a derivative work may exist is strengthened if complex data structures are
shared/exchanged (e.g., instantiation of objects defined in the GPL code).

Further separating the programs through the use of a wrapper (a thin layer of code placed

between two programs which acts like a translator to receive a function call from one

program and invoke the appropriate function in the second program) may strengthen the

argument that no combination occurred if a communication mechanism, such as an socket, is

utilized between two computers where one has the compiled GPL code and the other has the

proprietary executables stored.

Many copyright theories may come into play here but, given the inherent uncertainty of applying

these doctrines, sockets may provide one possible answer to deterring infringement claims for

creating a derivative work. Sockets work, effectively, as a rest stop between a client program

and a server program. A client program sends a request to the socket where it “rests” until it is

picked up by the server program. The server program returns the result to the socket where it

“rests” until it is picked back up by the client program. Sockets do create certain amount of

overhead but defining a clear line between two processing spaces to avoid “contamination” may

be worth it. Naturally, the FSF still asserts that if complex data structures are exchanged then

this mechanism may not save you from disclosure requirements triggered by distribution

but it does reduce some fear of contamination and, at a minimum, will help your tech/legal team

walk through whether or not an issue may exist.v Programmers already use wrappers/sockets as

a workaround for the GPL (see the next section on “Traditional Wrappers) but a case (Oracle

America v. Google), decided in May 2012, in the Northern District of California, made this

solution more comfortable …. at least until Oracle filed an appeal last October.vi If the decision

is upheld, however, here’s how the decision may affect programming practices.

Delving Into Traditional Wrappers

A traditional wrapper includes placing a socket, a method for communication between a client

program (e.g., proprietary code) and a server program (e.g., GPL code) in a network. A

programmer configures the socket to make calls to the GPL code (the socket and the GPL code

may be linked). These may be connected enough that the source to the socket may need to be

distributed. The Proprietary Application can send requests via a Socket Application Program

Interface (API) through a communication protocol (e.g., TCP/IP) to the Socket. The

Proprietary Application and the Socket are not programmatically linked although they do

communicate with one another. Both the Socket and Socket API must be coded and tested

before they can be deployed so, in addition to overhead, there may be some delay to market

using this technique.

KEEP SOURCE HIDDEN

Proprietary Application

DISCLOSE SOURCE

Socket API translates
calls from the

proprietary source into
GPL calls. Socket

makes calls to the GPL
code/GPL API

DISCLOSE
SOURCE

GPL Code

Post Oracle/Google Wrapper

If the decision from the Oracle/Google case stands, one may be able to use the previous method

with the actual GPL function calls in the Socket API and auto-generate the communication

protocol source code. Even better, initial testing can be done with calls directly placed in the

proprietary code to figure out which “pieces” of the GPL code may be necessary to achieve the

desired functionality. This will work if the names/organization of functions in the APIs are

upheld as functional thus eviscerating the copyrightability of those command calls.vii

KEEP SOURCE HIDDEN

Proprietary Application

DISCLOSE
SOURCE

GPL Code

DISCLOSE SOURCE

Socket API uses GPL
function calls. Socket
makes calls to the GPL

code/GPL API.

Caveats

This case only defines interpretation of APIs in the Northern District of California, so far, and

Oracle filed an appeal on October 4, 2012. That said, the holdingviii in Oracle v. Google aligns

well with that of Lotus v. Borland (1996). In Lotus, the Supreme Court affirmed an appellate

court’s ruling that the menu structures were a “method of operation” and not copyrightable.

Some of the amicus briefs, filed on Oracle’s behalf, attempt to distinguish the JAVA APIs from

the decision in Lotus.ix

However, just like a menu structure which calls a particular operation (e.g., “File” brings up a

sub-menu of choices such as “New”, “Save”, “Close”), the JAVA APIs provide a set of methods

(operations) organized under various classes that belong to specific packages. A programmer

using the JAVA package java.lang, which contains the class “string”, can invoke a method

named “toUpperCase” to convert the characters in a “string” to uppercase.x The 37 packages at

issue in the appeal may have more operations organized into various classes associated with each

of those packages but, fundamentally, they are a glorified menu structure for programmers and

should not be considered copyrightable subject matter as a method of operation.xi .

Additionally, the law tends to abhor barriers to entry (e.g., unreasonable non-compete clauses in

employment contracts) and, in this case, if Oracle wins the appeal and the APIs qualify as

copyrightable subject matter, they would become a barrier to entry for a JAVA programmer to

switch to the Android platform.xii Sort of like moving a programmer from one house plan to

another model … they will still be able to find the master bedroom but they may have hunt

around for it first. So, a programmer functionally loses their ability to “operate” in the JAVA

language without the use of the APIs.

Finally, Judge Alsup held that:

This order does not hold that JAVA API packages are free for all to use without license.

It does not hold that the structure, sequence and organization of all computer programs

may be stolen.xiii

So, regardless of the ultimate decision, a determination as to whether the code of an API is

functional or expressive must be made on a case-by-case basis perhaps with some sensitivity to

the specific community involved with a given open source package.xiv Finally, while avoiding

copyrighted elements of GPL code may not be as onerous in the future, there is always a

possibility that the functionality utilized could be covered by a patent. So, perhaps we’ll be

seeing more patents filed on open source packages in the future.

About the Author

Ria Farrell Schalnat
Of Counsel

Cincinnati, OH
P: (513) 977-8348
F: (513) 977-8141

ria.schalnat@dinsmore.com
http://www.dinsmore.com/ria_farrell_schalnat/

Ria’s passion for technology stems from her background as a computer programmer, which

affords her unique perspectives when counseling clients on patent and licensing matters. She has

helped clients secure patents for a wide range of technology-based systems, including billing,

data management, customer relationship management and speech technology. She is adept at

guiding clients throughout the entirety of the patent process, from reviewing disclosures and

determining patentability to drafting and filing applications and interfacing with the patent office

during the review process. She also has extensive experience in handling drafting and reviewing

computer licensing agreements with an additional focus in open source licensing. Additionally,

she has served as an adjunct professor at both the University of Dayton and University of

Cincinnati Law Schools, teaching courses in open source licensing, computer and cyberspace

law, and patent prosecution history analysis. Ria was the recipient of the Francis J. Conte

Special Service Award in 2010.

Ria is particularly honored to serve as the pronouncer for the WCPO Regional Spelling Bee for

Cincinnati, Northern Kentucky, and Southeast Indiana. She also enjoys playing chess and passes

on her love of the game to children through the Hua Xia Chinese School where her family

studies Mandarin Chinese. She managed several pro bono adoptions through the Volunteer

Lawyers Project and recently welcomed a son from China to her own family through adoption.

i Special thanks to Ted McCullough, co-chair of the IPO Subcommittee on Open Source and Senior IP Counsel-
Hewlett-Packard-IP Transactions. Thanks also to Dave Marr, Vice President, Legal at Qualcomm. Both provided
valuable advice on the direction of this article.
ii http://www.gnu.org/licenses/gpl-faq.html (visited September 12, 2012).
iii http://www.gnu.org/licenses/gpl-faq.html (visited September 12, 2012).
ivSee generally, Bain, Malcolm (2010) Software Interactions and the GNU General Public License,
IFOSS L. Rev, 2(2), pp 165 – 180 (an excellent discussion of static versus dynamic linking starts at page 175), See
also, Working Paper on the Legal Implication of Certain Forms of Software Interactions (a.k.a Linking)
Release 1 – July 2010 at
http://wiki.fsfe.org/EuropeanLegalNetwork/LinkingDocument?action=AttachFile&do=get&target=software_interact
ions.pdf (This document is directed to European Law but contains a detailed technical analysis of various linkages
that could be easily ported to a U.S. Copyright analysis).
vSee, http://programmers.stackexchange.com/questions/50118/avoid-gpl-violation-by-moving-library-out-of-process
(Note: As far as the author knows, this recommendation was NOT written by a lawyer but it does reflect, to an
extent, the sensibilities of the programming community with regard to these questions. Also note the comment
which criticizes this approach as being “morally reprehensible”: “If you don't like the GPL, then the "proper"
solution is not to use a GPL library.”)

vi ORDER RE COPYRIGHTABILITY OF CERTAIN REPLICATED ELEMENTS OF THE JAVA
APPLICATION PROGRAMMING INTERFACE. United States District Court for the Northern District of
California. May 31, 2012. (Oracle America v. Google).
vii ORDER PARTIALLY GRANTING AND PARTIALLY DENYING DEFENDANT’S MOTION FOR
SUMMARY JUDGMENT ON COPYRIGHT CLAIM. United States District Court for the Northern District of
California. September 15, 2011 at page 13 (“This order finds that the names of the various items appearing in the
disputed API package specifications are not protected by copyright.
viii “But the names are more than just names – they are symbols in a command structure wherein the commands take
the form ‘java.package.Class.method().’ Each command calls into action a pre-assigned function. The overall name
tree, of course, has creative elements but it is also a precise command structure – a utilitarian and functional set of
symbols, each to carry out a preassigned function. The command structure is a system or method of operation under
Section 102(b) of the Copyright Act and, therefore, cannot be copyrighted. Duplication of the command structure is
necessary for interoperability.” ORDER RE COPYRIGHTABILITY OF CERTAIN REPLICATED ELEMENTS
OF THE JAVA APPLICATION PROGRAMMING INTERFACE at page 4.
ix See, Groklaw at http://www.groklaw.net/articlebasic.php?story=20130221153759232 (provides links to the
amicus briefs filed on behalf of Oracle as well as an analysis of Microsoft’s amicus brief).
x http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/String.html.
xi Initially, I did not agree with the decision in Lotus v. Borland but that is the current law of the land and would
require the United States Supreme Court to reverse their earlier position (which was actually 4-4) to render Oracle’s
position viable. Also, at the time Lotus v. Borland was decided, patent protection for software was ramping up so
this may have been seen as a viable alternative. Patent protection for software has come under a significant amount
of fire in the last few years which, from a policy perspective, makes this case ripe for another look by the United
States Supreme Court.
xii Four packages in the JAVA API were deemed core to the JAVA language (including java.net, java.io, java.lang,
and java.util). Some of these packages contained object and exception classes, without which the JAVA language
would be virtually useless for coding programs. One has to wonder if there is such a thing as a non-core or non-
functional API call?
xiii ORDER RE COPYRIGHTABILITY OF CERTAIN REPLICATED ELEMENTS OF THE JAVA
APPLICATION PROGRAMMING INTERFACE at page 41.
xiv Remember, some open source communities may find this technique objectionable even if it is legally permissible.
See, supra, the “morally reprehensible” comment in Footnote 5. So, if the goal is to avoid controversy, a quick
check of a given community’s feelings may be in order.

